
Introduction to Real Time
Java

Deniz Oğuz

Initial:22.06.2008
Update:05.12.2009

Outline

What is Real-time?
What are the problems of Java SE?
Real-Time Linux
Features of RTSJ (Real Time Specification for

Java), JSR 1, JSR 282
IBM Websphere Real-Time
SUN RTS

What is Real-time?

Real-time does not mean fast
Throughput and latency are important but does not
enough

Real-time is about determinism
Deadlines must be met

Real-time is not just for embedded systems
Financial applications
Telecommunication applications
Network centric systems etc...

Categories of Application Predictability

Hard Real-Time

None Real-Time

Soft Real-Time

No time-based deadlines
Ex:Batch processing, web services

Deadlines may be missed occasionally
Ex:Router, automated trading systems

Deadlines can not be missed
Ex:fly-by-wire system, anti-lock brake system, motion control

Hard/Soft real-time

Hard real-time
A late answer has no
value

Soft real-time
late answer has still a
value but value of
answer rapidly
degrees

Software Complexity vs. Time

Taken From IBM WebSphere Real Time: Providing predictable performance by Michael S. Fulton, Java chief
architect;Darren V. Hart, Real Time team lead; andGregory A. Porpora, IBM Software Group. December 2006

Latency and Jitter

• Latency is the time between external event and
system’s response to that event

• Jitter is the variation in latency

Hardware Architecture & OS

Modern processors and operating systems are
optimized for throughput

It makes excellent sense for most systems to
trade a rare factor of 100 times slowdown for
a performance doubling everywhere else

Hardware & OS Cont.

Worst-case scenario for an instruction
Instruction is not in the cache, processor must read
it from memory
An address translation cache miss requires more
memory access
Instruction might be in demand paged memory
Data may not be in cache
A large DMA may delay operations
SMI on X86 platforms
.......

Worst Case Execution Cont.

Event Estimate Time (ns)
Execute Instruction 10

Instruction cache miss 50

Instruction ATC miss 500

Data cache miss 100

Dirty data cache write ATC miss 500

Data cache read ATC miss 500

Demand paging for instruction read (write dirty page) 20000000

Demand paging for dirty data cache write (read page) 10000000

Demand paging for data cache write (write dirty page) 20000000

Demand paing for data cache write (read page) 10000000

Demand paging for data cache read (write page) 20000000

Demand paging for data cache read (read page) 10000000

Interrupts 100000

One Big DMA 10000000

Total 100101660

This example is taken from Real-Time Java Platform Programming by Peter C. Dibble

How to prevent worst case
Disable paging for time critical code
Use processor affinity and pin RT Threads to
cpus
Use tunable DMA
Use large pages to reduce load on TLB
Disable interrupts or give RT Threads higher
priority than some interrupts
On x86 architecture pay attention to SMI
(System Management Interrupts)

– Do not disable it completely , you may burn
down your processor.

Processor Pinning

• Less context switching jitter
• Decreased cache miss
• Example (Linux and Sun RTS only):

– -XX:RTSJBindRTTToProcessors=0,1
– -XX:RTSJBindNHRTToProcessors=0,1
– Alternatively you can create a cpu set named xx and use

/dev/cpuset/xx

Large Memory Pages

• Garbage collectors performs very bad if memory
is swaped to disk

• For increased determinism use large memory
pages and pin these pages to memory

• Example Linux and Sun’s Java SE only:
– echo shared_memory_in_bytes > /proc/sys/kernel/shmmax

– echo number_of_large_pages > /proc/sys/vm/nr_hugepages

– Start JVM using XX:+UseLargePages argument

– Verify using cat /proc/meminfo | grep Huge

Refer following Sun article for large memory pages:Java Support for Large Memory Pages

RT-POSIX

• An extension to POSIX standard to address
hard and soft real-time systems (POSIX
1003.1b)

– Priority Inversion Control and Priority Inheritance
– New schedulers
– Asynchronous IO
– Periodic, Aperiodic and Sporadic Threads
– High Resolution Timers
– RT File System
– Some others

For further information refer to RT Posix standard

RT Linux

Fully preemptible kernel
Threaded interrupt handlers for reduced latency
High-resolution timers
Priority inheritance
Robust mutexes and rt-mutexes
To install use

sudo apt-get install linux-rt
in ubuntu. Select rt kernel at next system start-
up

Why Java?
Software (including embedded software) becomes
more complex and gets unmanageable with old
practices and tools

Ex:Financial systems, Network Centric systems

Single language, tools for real-time and non-real time
parts
Java Platform provides a more productive environment
A large set of 3rd party libraries are available

Has a very big community
Large number of developers
Support from big companies like IBM, SUN, Oracle

A lot safer when compared to low level languages

Cons of Using C and Java
Together

Same functionality is codded twice

High amount of integration problems

Interfaces between C and Java is ugly and introduce
overhead

Communication via JNI can violate safe features of Java

The JNI interface is inefficient

Increased maintenance cost in the feature due to above
problems

What are the problems of Java SE?

Dynamic Class Loading and Linking
JIT (Just in Time Compiler)
Thread Handling
Garbage Collector
No Raw Memory Access
No support for real-time operations, like
deadline miss handling, periodic scheduling,
processor pinning etc.

Dynamic Class Loading

A Java-conformant JVM must delay loading a
class until it's first referenced by a program

Early loading is not allowed so JVM can not do this
for you at application startup

This introduce unpredictable latency from a few
microseconds to milliseconds.

Depends on from where classes are loaded
Static initialization
Number of classes loaded

JIT (Just In Time Compiler)

Most modern JVMs initially interpret Java
methods and, and later compile to native code.
For a hard RT application, the inability to predict
when the compilation will occur introduces too
much nondeterminism to make it possible to
plan the application's activities effectively.

Garbage Collection

Pros
Pointer safety,
leak avoidance,
Fast memory allocation:faster than malloc and
comparable to alloca
Possible de-fragmentation

Cons
Unpredictable pauses:Depends on size of the heap,
number of live objects on the heap and garbage
collection algorithm, number of cpus and their
speed

Main Garbage Collection Features

• Stop-the-world or Concurrent
• Moving objects
• Generational
• Parallel

Garbage Collection in HotSpot

• Serial Collector
– -XX:+UseSerialGC

• Parallel-scavenging
– -XX:+UseParallelGC

• Parallel compacting
– -XX:+UseParallelOldGC

• Concurrent Mark and Sweep (CMS)
– -XX:+UseConcMarkSweepGC

Garbage First Collector (G1)

• Planned for JDK 7
• Low pause and high throughput soft real-time

collector
• It is parallel and concurrent
• Performs compaction
• Devides heap to regions and further devides

them to 512 bytes cards
• It is not a hard real-time collector

Thread Management

Although standard Java allows priority
assignment to threads, does not require low
priority threads to be scheduled before high
priority ones
Asynchronously interrupted exceptions

Similar to Thread.stop but this version is safe
Priority Inversion may occur in standard
Java/Operating systems

RTSJ requires Priority Inheritance

What is RTSJ?

Designed to support both hard real-time and
soft real-time applications
Spec is submitted jointly by IBM and Sun
Spec is first approved in 2002 (JSR 1)
Minor updates started on 2005 (JSR 282)
First requirements are developed by The
National Institute of Standards and Technology
(NIST) real-time Java requirements group

Expert Group of RTSJ

RTSJ's Problem Domain

If price of processor or memory is a small part
of whole system RTSJ is a good choice

If processor and memory price is very significant
when compared with the rest of the system RTSJ
may not be a good choice because you will need
slightly more powerful processor and larger memory
For very low footprint applications with very limited
resources you may consider a non RTSJ compliant
virtual machine like Aonix Perc Pico or you may
even consider a hardware JVM.

Implementations
IBM Webshere Real Time (RTSJ Compliant)

Works on real-time linux kernel
There is a soft real-time version

SUN RTS (RTSJ Compliant)
Works on Solaris x86/Sparc or real-time linux kernel

Aonix Perc (Not RTSJ Compliant but close)
Perc-Ultra works on nearly all platforms
They have a safety critical JVM (Perc-Raven)

Apogee
Woks on nearly all platforms

Main Features of RT Java
Implementations

Full Java SE compatibility and Java syntax
A way to write programs that do not need garbage collection (New

API)
High resolution timer (New API)
Thread priorities and locking (New API)
Asynchronous Event Handers (New API)
Direct memory access (New API)
Asynchronous Transfer of Control (New API)
AOT (A Head of Time) compilation (Not in RTSJ specification)
Garbage collection (Not in RTSJ specification)

Real-Time Garbage Collectors

• Time based (Metronome of Websphere RT)
• Work based
• Henriksson’s GC (Garbage Collector of Sun’s

Java RTS is based on this)

Sun’s RT Garbage Collector

• 3 modes of execution
• Non generational, concurrent and parallel collector
• In normal mode works with priority higher than non-rt threads

but lower than any rt thread.
• When free memory goes below a certain threshold priority is

increased to boosted priority but RT Threads (including the one
with priority lower than GC) still continues to work concurently

• When free memory goes below a critical threshold.All threads
whose priority is lower than GC boosted priority are suspended

• Most of its working can be tuned using command line switches
like: NormalMinFreeBytes, RTGCNormalWorkers,
RTGCBoostedPriority, BoostedMinFreeBytes etc.

AOT, ITC and JIT

• Nearly all Java SE vendors use JIT (Just in time
compiler) due to performance reasons

• Websphere RT uses AOT (Ahead of Time
Compilation)

• SUN’s Java RTS uses ITC (Initialization Time
Compilation)

Refer following IBM Article for further information: Real-time Java, Part 2: Comparing compilation techniques

High-Resolution Timer
A more powerful notion of time

AbsoluteTime
RelativeTime

84 bits value
64 bits milliseconds and 32 bits nanoseconds
Range is 292 million years

Every RTSJ implementation should have provide at
least one high resolution clock accessible with
Clock.getRealTimeClock()
Resolution is system dependent

– For example it is 200ns for SunFire v240 (Ref:Real-Time Java
Programming by Greg Bollella)

– Do not expect too much from a laptop

HighResolutionTime Base Class

Base class for
other 3 time
classes.
Define the
interface and
provides
implementation
of some
methods
This class and
its subclass do
not provide any
synchronization

AbsoluteTime and RelativeTime

AbsoluteTime represents a specific point in time
– The string 03.12.2008 11:00:00.000 AM

represents an absolute time
– Relative to 00:00:00.000 01.01.1970 GMT

RelativeTime represents a time interval
Usually used to specify a period for a
schedulable object
Can be positive, negative or zero

Priority Scheduler

• Normal scheduling algorithms try to be fair for
task scheduling.
– Even lower priority tasks are scheduled some times

• There are different real-time and non real-time
schedulers
– Earliest-deadline first, least slack time, latest release

time etc.
• Fixed priority preemptive scheduler is most used

real-time scheduler

Thread Scheduling in RTSJ

• Does not specify a scheduling implementation
• Allow different schedulers to be plugged
• Required base scheduler should be a priority

scheduler with at least 28 unique priorities
• Most implementations provide more than 28

priorities

More on this with Scheduling Parameters Slide

What is Priority Inversion?

• Priority Inversion is the situation where a higher
priority task waits for a low priority task.

• There are 2 generally accepted solution
– Priority Inheritance (required by RTSJ)
– Priority Ceiling Emulation (optional for RTSJ)

What is Priority Inversion? cont.

Time

Shared
Resource

Legend

Lock
request

Waiting Task

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Low priority
executing task
Med priority
executing task
High priority
executing task

Schedulable Interface

Scheduling Parameters

Different Task Types

• Periodic
• Aperiodic Tasks
• Sporadic

Release Parameters

Sample Periodic Task
public class HelloWorld extends RealtimeThread {

public static long[] times = (long[]) ImmortalMemory.instance().newArray(long.class, 100);

public HelloWorld(PeriodicParameters pp) {
super(null, pp);

}

public void run() {
for (int i = 0; i < 100; i++) {

times[i] = System.currentTimeMillis();
waitForNextPeriod(); //wait for next period

}
}

public static void main(String[] argv) {
//schedule real time thread at every 100 milisecond
PeriodicParameters pp = new PeriodicParameters(new RelativeTime(100, 0));
HelloWorld rtt = new HelloWorld(pp);
rtt.start();

//wait real time thread to terminate
try {

rtt.join();
} catch (InterruptedException ex) {

ex.printStackTrace();
}

//print results
for (int i = 0; i < 100; i++) {

System.out.println(times[i]);
}

}
}

Periodic Execution vs
Thread.sleep

Real-time systems do not use a loop with a
sleep in it to drive periodic executions

While (true) {
performPeriodicTask()
Thread.sleep(period)

}
WRONG

Deadline Miss!
• For some applications a deadline should not be

missed for any reason
• For most applications dealine miss is bad, but it

is not a total failure and a recovery is possible
• In RTSJ there are 2 ways to detect a deadline

miss
– waitForNextPeriod() returns false immediately
– Use a deadline miss handler which is an instance of

AEH

NoHeapRealTime Thread

• Can not access heap
– Can preempt GC immediately
– If this rule is violated, MemoryAccessError is thrown

• Can use ScopedMemory or ImmortalMemory
• Should be created and started in a scoped or

immortal memory
– They can not be created from normal Threads

WaitFreeWriteQueue

• Intendent for exchanging
data between real-time
and non real-time part

• Real-time producer does
not block when queueing
data

• Multiple non-real time
consumers may dequeue
data

WaitFreeReadQueue

• Intendent for exchanging
data between real-time
and non real-time part

• Real-time consumer
does not block when
reading data

• Multiple non-real time
producers may queue
data

Memory Regions
• Heap Memory

– Same as in Java SE
– Can be accessed with javax.realtime.HeapMemory

• Scoped Memory
– Created and sized at development time
– Can be accessed with javax.realtime.ScopedMemory
– Can not be garbage collected; reference count to ScopedMemory object is used.

Finalize method of objects are called
– Can be stacked

• Immortal Memory
– Can be accessed with javax.realtime.ImmortalMemory
– Only one instance exist and size is determined at development time.
– All static data and allocations performed from static initializers are allocated in

Immortal memory. Interned Strings are also allocated in immortal memory
• Physical Memory

– There are LTPhysicalMemory, VTPhysicalMemory, and ImmortalPhysicalMemory

Memory Regions

Raw Memory Access

• Models a range of
physical memory as a
fixed sequence of bytes

• Allows device drivers to
be writen in java

• All raw memory access
is treated as volatile, and
serialized

Raw Memory Access Cont

private final long DEVICE_BASE_ADDRESS = xxxxxx;
private final long CTRLREG = 0;
private final long STATREG = 4;
………

public void init() {
RawMemoryAccess device = new RawMemoryAccess(type, DEVICE_BASE_ADDRESS);
device.setInt(CTRL_REG, MY_COMMAND); //send command to device
while (device.getInt(STATREG) != 0); //wait for device to response

}

Async Events

Many of the processing in
RT systems are triggered by
internal or external events
You don’t need to manage
threads
Hundreds of AEHs may
share a pool of threads
BoundAsyncEventHandler
has always bounded to a
dedicated thread

Handling Posix Events

• Use POSIXSignalHandler
– Ex:

.....

class SigintHander extends AsynchEventHandler {
public SigintHandler() {

//set it to highest priority
setSchedulingParameters(new PriorityParameters(RTSJ_MAX_PRI);

}
public void handleAsynchEvent() {

//handle user specified signal
}

}

......
//add handler to posix predefined posix signal
POSIXSignalHandler.addHandler(PosixSignalHandler.SIGUSR1, sigintHandler)

Use kill -s SIGUSR1 PID to test

Time Triggered Events

OneShotTimer : execute handleAsyncEvent
method once at the specified time
PeriodicTimer : execute handleAsyncEvent
method repeatedly at specified interval. A
periodicTimer and a AEH combination is
roughly equivalent to Periodic Threads.
Enable/Disable Timer : A disabled timer is still
kicking. But it does not generate events. When
enabled again, it continues like never disabled.

Javolution Library
(http://javolution.org)

High performance and time deterministic
(util/lang/text/io/xml)
Struct and Union base classes for direct
interfacing with native applications
NHRT Safe
Pure Java and less than 300Kbytes
BSD License

IBM WebSphere Real Time

Runs on linux with real time patches applied to
linux kernel on x86 platforms
Has AOT and JIT Compilers
Shared classes support
Contains Metronome: a real-time garbage
collector
Full RTSJ 1.0.2 and Java SE 6.0 support
A well defined list of NHRT safe classes

Metronome Garbage Collector

Uses a time based method for scheduling
Applications threads are given a minimum
percentage of time (utilization)

User supplied at startup
Uses a new two-level object model for arrays
called arraylets

Websphere AOT

SUN RTS

Achieves maximum latencies of 15
microseconds, with around 5 microseconds of
jitter.
Runs on real-time linux and Solaris 10
Has a real-time garbage collector

IBM WebSphere Real Time
Runs on linux with
real time patches
applied to linux kernel
Has AOT and JIT
Compilers
Contains Metronome
real-time garbage
collector
RTSJ and Java SE
5.0 Compliant

Real World Projects:J-UCAS X-45C

Real World Projects:FELIN

Real World Projects:DDG-1000

Real World Projects:ScanEagle

This milestone marked the first flight using the
RTSJ on an UAV and received the Java 2005
Duke’s Choice Award for innovation in Java
technology.

Is RTSJ Required for You?

If your application can tolerate some degree of
indeterminism use standard JVM and tune it to
milliseconds level
Only if you fail the first approach use RTSJ.

Try to meet your timing constrains with real-time
garbage collector (if available) without using
advance/complex features like scoped memory
If first approach fails make use of
NonHeapRealTimeThread, ImmortalMemory,
ScopedMemory

A comparison of the features of RTSJ with
the increased predictability

From IBM WebSphere Real Time Manual

Safety Critical Java (JSR 302)

A subset of RTSJ that can be certified DO-178B
and ED-128B.
Most probably garbage collector will not be
available (not needed)
Will be targeted to Java ME platform, because
Java SE and Java EE are too complex to be
certified.

Expert Group of JSR 302

Specification Lead:C. Douglass Locke (POSIX 1003.4 Real-Time
Extensions Working Group)

Expert Group

Aicas GmbH Aonix North America, Inc Apogee Software, Inc.
AXE, Inc Boeing DDC-I, Inc
IBM Siemens AG Rockwell Collins, Inc

Sun Microsystems The Open Group

Resources
Real-Time Java Platform Programming by Peter C. Dibble

Real-Time Java Programming with Java RTS by Greg Bollea

RTSJ Main Site (www.rtsj.org)

IBM’s Developerworks Articles
(http://www.ibm.com/developerworks/)

SUN RTS
(http://java.sun.com/javase/technologies/realtime/reference.jsp)

Deniz Oğuz’s blog (www.denizoguz.com)

Resources Cont. (JavaOne Presentations in 2008)

TS-4797 Fully Time-Deterministic Java Technology
Explains Javalution Library

TS-5767 Real-Time Specification for Java (JSR 1)
Explains status of RTSJ. Join presentation from SUN, IBM,
Locke Consulting (JSR 302 spec lead)

TS-5925 A City-Driving Robotic Car Named Tommy
Jr.

An autonomous ground vehicle fully powered by Java.

TS-5609 Real Time: Understanding the Trade-offs
Between Determinism and Throughput

