
1

Introduction to Real Time
Java

Deniz Oğuz

Initial:22.06.2008
Update:05.12.2009

2

Outline

What is Real-time?
What are the problems of Java SE?
Real-Time Linux
Features of RTSJ (Real Time Specification for

Java), JSR 1, JSR 282
IBM Websphere Real-Time
SUN RTS

3

The first misconception is that real-time is minimal application latency
and/or maximum data throughput. But actually real-time is about
derminism. A system with latencies in the range of hundereds of
milliseconds can also be real-time. Nor is real-time solely for embedded
applications and systems; there is a growing need for enterprise
determinism.
For example financial applications and telecommunication applications
have very strict real-time requirements.
Determinism and throughput are usually inversely related. Determinism
usually cost performance. A system that needs to bring its base-case
and worst-case performances as close together as possible cannot use
hints or heuristics and cannot rely on the ”80/20” rule. For example a
quicksort ca takeO(n2) time so although a mergesort is slower than
quicksort on average it is more suitable to real-time systems because it
is predictable. The resulting software is typically slower than a software
that is designed to optimize typical performance, but its worst-case
performance may be an order of magnitude better than such a
conventional design.

What is Real-time?

Real-time does not mean fast
Throughput and latency are important but does not
enough

Real-time is about determinism
Deadlines must be met

Real-time is not just for embedded systems
Financial applications
Telecommunication applications
Network centric systems etc...

4

Saying a system is real-time does not mean that all parts of that system is real-time. It
means there are certain tasks that should be performed in real-time.

Categories of Application Predictability

Hard Real-Time

None Real-Time

Soft Real-Time

No time-based deadlines
Ex:Batch processing, web services

Deadlines may be missed occasionally
Ex:Router, automated trading systems

Deadlines can not be missed
Ex:fly-by-wire system, anti-lock brake system, motion control

5

In a hard real-time system, a late answer is the
same with no answer or wrong answer.
In a soft real-time system, a late answer is still
useable but value of it decreases rapidly. In other
words occasional dead-line misses are
acceptable.
The severity of the consequence of missing a
deadline has nothing to do with the definition of
hard versus soft.

Hard/Soft real-time

Hard real-time
A late answer has no
value

Soft real-time
late answer has still a
value but value of
answer rapidly
degrees

6

As the requirement for deterministic behavior moves from
tightly coupled embedded tasks that control or monitor
hardware subsystems to highly complex enterprise
applications, software complexity and deterministic latency
requirements become inversely proportional to solution needs
and capabilities.

General real-time software usually deals with time measured in
milliseconds. Most real-time systems fall into this range. These
systems can be programmed with normal tools.

In practice, achieving response times below tens of
microseconds requires a combination of custom hardware and
software, possibly with no -- or a very thin -- operating-system
layer.

Within this overall complexity, architects, systems designers
and developers need an environment that can span a
significant portion of the response
spectrum. This model must not only meet a broad bandwidth of
performance and latency requirements, but also be scalable
and relatively simple to use.

Software Complexity vs. Time

Taken From IBM WebSphere Real Time: Providing predictable performance by Michael S. Fulton, Java chief
architect;Darren V. Hart, Real Time team lead; andGregory A. Porpora, IBM Software Group. December 2006

7

Aim of a real-time system is to put a deterministic bound to latency not to minimize it. The
goal is to make latency known, small enough, consistent and measureable quantity.
Jitter is the variation in latency.

Latency and Jitter

• Latency is the time between external event and
system’s response to that event

• Jitter is the variation in latency

8

Hardware Architecture & OS

Modern processors and operating systems are
optimized for throughput

It makes excellent sense for most systems to
trade a rare factor of 100 times slowdown for
a performance doubling everywhere else

9

Hardware & OS Cont.

Worst-case scenario for an instruction
Instruction is not in the cache, processor must read
it from memory
An address translation cache miss requires more
memory access
Instruction might be in demand paged memory
Data may not be in cache
A large DMA may delay operations
SMI on X86 platforms
.......

10

As you can see worst case execution time can be
1 million times of best execution time. There can
be other factors not included in this example. For
example SMI (System Management Interrupts) on
X86 hardware may add extra delay.

Worst Case Execution Cont.

Event Estimate Time (ns)
Execute Instruction 10

Instruction cache miss 50

Instruction ATC miss 500

Data cache miss 100

Dirty data cache write ATC miss 500

Data cache read ATC miss 500

Demand paging for instruction read (write dirty page) 20000000

Demand paging for dirty data cache write (read page) 10000000

Demand paging for data cache write (write dirty page) 20000000

Demand paing for data cache write (read page) 10000000

Demand paging for data cache read (write page) 20000000

Demand paging for data cache read (read page) 10000000

Interrupts 100000

One Big DMA 10000000

Total 100101660

This example is taken from Real-Time Java Platform Programming by Peter C. Dibble

11

Even non rt windows and linux allows memory of
a process to be locked in to memory. So at worst
everything your program needs will be in memory.
Some DMA controllers can be tuned to use no more
than a specific faction of memory bandwidth or get off
the bus entirely when the processor is servicing
interrupts
TLB is limited resource on processors. They are
used to translate virtual addresses to physical
addresses. Normally most operating systems uses
4K pages. For each page a TLB entry is required.
You can reserve some number of large pages like
256Megabytes for your process.

How to prevent worst case
Disable paging for time critical code
Use processor affinity and pin RT Threads to
cpus
Use tunable DMA
Use large pages to reduce load on TLB
Disable interrupts or give RT Threads higher
priority than some interrupts
On x86 architecture pay attention to SMI
(System Management Interrupts)

– Do not disable it completely , you may burn
down your processor.

12

Pinning Your Threads to processors can help to increase determinism. Both solaris and linux
supports processor pinning. Solaris also supports interrupt shielding. Not all linux
distributions support ineterrupt shielding. Your accound should have sufficient privileges to
use processor pinning.
As you can see you you can not select which thread works on which CPU. Your RealTime
and NoHeapRealTime threads will use assigned cpus and all other applications and other
JVM Threads (GC threads, JIT compiler thread etc.) will use other cpus in the system.

Processor Pinning

• Less context switching jitter
• Decreased cache miss
• Example (Linux and Sun RTS only):

– -XX:RTSJBindRTTToProcessors=0,1
– -XX:RTSJBindNHRTToProcessors=0,1
– Alternatively you can create a cpu set named xx and use

/dev/cpuset/xx

13

Beginning with Java SE 5.0 there is a cross-platform flag for requesting large memory
pages: -XX:+UseLargePages (on by default for Solaris, off by default for Windows and
Linux). The goal of large page support is to optimize processor Translation-Lookaside
Buffers.
A Translation-Lookaside Buffer (TLB) is a page translation cache that holds the most-
recently used virtual-to-physical address translations. TLB is a scarce system resource. A
TLB miss can be costly as the processor must then read from the hierarchical page table,
which may require multiple memory accesses. By using bigger page size, a single TLB
entry can represent larger memory range. There will be less pressure on TLB and memory-
intensive applications may have better performance. Using large memory pages may
negatively affect performance of system if it cause memory shortage for the rest of the
system.

Large Memory Pages

• Garbage collectors performs very bad if memory
is swaped to disk

• For increased determinism use large memory
pages and pin these pages to memory

• Example Linux and Sun’s Java SE only:
– echo shared_memory_in_bytes > /proc/sys/kernel/shmmax

– echo number_of_large_pages > /proc/sys/vm/nr_hugepages

– Start JVM using XX:+UseLargePages argument

– Verify using cat /proc/meminfo | grep Huge

Refer following Sun article for large memory pages:Java Support for Large Memory Pages

14

RT-POSIX

• An extension to POSIX standard to address
hard and soft real-time systems (POSIX
1003.1b)

– Priority Inversion Control and Priority Inheritance
– New schedulers
– Asynchronous IO
– Periodic, Aperiodic and Sporadic Threads
– High Resolution Timers
– RT File System
– Some others

For further information refer to RT Posix standard

15

A standard Linux kernel provides soft RT behavior, and although there's no
guaranteed upper bound on how long a higher-priority thread waits to preempt a
lower-priority thread, the time can be roughly approximated as tens of milliseconds
In RT Linux, almost every kernel activity is made preemptible, thereby reducing the
time required for a lower-priority thread to be preempted and allow a higher-priority
one to run. Remaining critical sections that cannot be preempted are short and
perform deterministically. RT scheduling latencies have been improved by three
orders of magnitude and can now be measured roughly in tens of microseconds.

Almost all interrupt handlers are converted to kernel threads that run in process
context. Latency is lower and more deterministic because handlers become user-
configurable, schedulable entities that can be preempted and prioritized just like any
other process.

High-resolution time and timers provide increased resolution and accuracy. RT Java
uses these features for high-resolution sleep and timed waits. Linux high-resolution
timers are implemented with a high-precision, 64-bit data type. Unlike traditional
Linux, where time and timers depend on the low-resolution system tick -- which limits
the granularity of timer events -- RT Linux uses independently programmable high-
resolution timer events that can be made to expire within microseconds of each
other.
RT-Linux prevents priority Inversion by using priority inheritance. Following slides
contains more information about this topic.

RT Linux

Fully preemptible kernel
Threaded interrupt handlers for reduced latency
High-resolution timers
Priority inheritance
Robust mutexes and rt-mutexes
To install use

sudo apt-get install linux-rt
in ubuntu. Select rt kernel at next system start-
up

16

Java RTS real-time components and non-real-
time components can coexist and share data on a
single system. An RTS enabled JVM is fully
compatible with Java SE giving developers
unforeseen flexibility.

Why Java?
Software (including embedded software) becomes
more complex and gets unmanageable with old
practices and tools

Ex:Financial systems, Network Centric systems

Single language, tools for real-time and non-real time
parts
Java Platform provides a more productive environment
A large set of 3rd party libraries are available

Has a very big community
Large number of developers
Support from big companies like IBM, SUN, Oracle

A lot safer when compared to low level languages

17

Cons of Using C and Java
Together

Same functionality is codded twice

High amount of integration problems

Interfaces between C and Java is ugly and introduce
overhead

Communication via JNI can violate safe features of Java

The JNI interface is inefficient

Increased maintenance cost in the feature due to above
problems

18

Due to these constrain Java is not suitable for
real-time applications. One alternative may be
codding real-time part of the application with
another language, like C, and code the remaining
non-real-time parts using Java. This technique is
widely used in the past.

What are the problems of Java SE?

Dynamic Class Loading and Linking
JIT (Just in Time Compiler)
Thread Handling
Garbage Collector
No Raw Memory Access
No support for real-time operations, like
deadline miss handling, periodic scheduling,
processor pinning etc.

19

A Java-conformant JVM must delay loading a
class until it's first referenced by a program.
Loading a class can take a variable amount of
time depending on the speed of the medium (disk
or other) the class is loaded from, the class's size,
and the overhead incurred by the class loaders
themselves. If tens or hundreds of classes need to
be loaded, the loading time itself can cause a
significant and possibly unexpected delay. Careful
application design can be used to load all classes
at application start-up, but this must be done
manually because the Java language specification
doesn't let the JVM perform this step early.

Dynamic Class Loading

A Java-conformant JVM must delay loading a
class until it's first referenced by a program

Early loading is not allowed so JVM can not do this
for you at application startup

This introduce unpredictable latency from a few
microseconds to milliseconds.

Depends on from where classes are loaded
Static initialization
Number of classes loaded

20

When java was first introduced it was a interpreted
language. But today nearly all JVMs use mixed mode
execution. That means methods are initially interpreted
but when the runtime has enough information about the
code it is compiled to native code. HotSpot may even
compile a method more than once to improve its
performance when more information about the code is
available.
Althoug this behavior maximizes throughput in a server
application (where java is dominated today) introduce
significant nondeterminism about performance of a
method.
There are java compilers that produce native code
directly for example gcj but moderm non-rt JVMs prefer
JIT compilation because this makes lots of
optimizations possible when compared to static
compilation. For example polymorphic call to
monomorphic call optimization, escape analyses.

JIT (Just In Time Compiler)

Most modern JVMs initially interpret Java
methods and, and later compile to native code.
For a hard RT application, the inability to predict
when the compilation will occur introduces too
much nondeterminism to make it possible to
plan the application's activities effectively.

21

Errors introduced by the need to manage memory
explicitly in languages such as C and C++ are
some of the most difficult problems to diagnose.
Proving the absence of such errors when an
application is deployed is also a fundamental
challenge. One of the Java programming model's
major strengths is that the JVM, not the
application, performs memory management,
which eliminates this burden for the application
programmer.
On the other hand, traditional garbage collectors
can introduce long delays at times that are
virtually impossible for the application programmer
to predict. Delays of several hundred milliseconds
are not unusual

Garbage Collection

Pros
Pointer safety,
leak avoidance,
Fast memory allocation:faster than malloc and
comparable to alloca
Possible de-fragmentation

Cons
Unpredictable pauses:Depends on size of the heap,
number of live objects on the heap and garbage
collection algorithm, number of cpus and their
speed

22

Concurrent means works concurrently with mutator threads
Parallel means more than one thread is used for collection
Moving :explain fragmentation
Generational:explain yound and old generation. Why this is necessary. Young generation
collection and old generation collection. Fast/slow etc.

Main Garbage Collection Features

• Stop-the-world or Concurrent
• Moving objects
• Generational
• Parallel

23

Different collectors can be used for different generation
Parallel-scavenging:like serial collector but uses multiple threads.Only works on young
generation
Parallel compacting:like parallel-scavenging but works on yound and old generation
CMS works on only old generation. Parallel GC is used for young generation. It is not a
compacting collector. To combat fragmentation assumes feature object size demands based
on past allocations. Some malloc implementations also combats fragmentation using
simillar techniques.

Garbage Collection in HotSpot

• Serial Collector
– -XX:+UseSerialGC

• Parallel-scavenging
– -XX:+UseParallelGC

• Parallel compacting
– -XX:+UseParallelOldGC

• Concurrent Mark and Sweep (CMS)
– -XX:+UseConcMarkSweepGC

24

Garbage First Collector (G1)

• Planned for JDK 7
• Low pause and high throughput soft real-time

collector
• It is parallel and concurrent
• Performs compaction
• Devides heap to regions and further devides

them to 512 bytes cards
• It is not a hard real-time collector

25

Standard Java provides no guarantees for thread
scheduling or thread priorities. An application that
must respond to events in a well-defined time has
no way to ensure that another low-priority thread
won't get scheduled in front of a high-priority
thread.
Asynchronously Interrupted exceptions provides a
safe way to stop a thread from another thread. But
unlike Thread.stop this method stops the target
thread in a controlled way.
Priority Inversion may occur in non-rt operating
systems and standard java. RTSJ requires an
operating system that implements Priority
Inheritance but allows others like Priority Ceiling
emulation.

Thread Management

Although standard Java allows priority
assignment to threads, does not require low
priority threads to be scheduled before high
priority ones
Asynchronously interrupted exceptions

Similar to Thread.stop but this version is safe
Priority Inversion may occur in standard
Java/Operating systems

RTSJ requires Priority Inheritance

26

Java Real-Time Specification is shortly written as RTSJ.
In 1998 a group of experts in real-time computer control
was formed and coordinated by the National Institute of
Standards and Technology (NIST) to draft requirements
for real-time Java. The members were representatives
from 50 different companies, government institutes and
researchers from academic institutions. The main aim of
the group was to develop a cross-disciplinary
specification for real-time functionality that is expected
to be needed by real-time applications written in Java
programming language and being executed on various
platforms. The group workshops at NIST produced nine
core requirements for a Real-Time Java specification,
together with number of derived sub-core requirements.
This is the basis of the Real-Time Specification for Java
(RTSJ). The weaknesses of the Java language
specification for writing real-time applications are
addressed in the core requirements.

What is RTSJ?

Designed to support both hard real-time and
soft real-time applications
Spec is submitted jointly by IBM and Sun
Spec is first approved in 2002 (JSR 1)
Minor updates started on 2005 (JSR 282)
First requirements are developed by The
National Institute of Standards and Technology
(NIST) real-time Java requirements group

27

Expert Group of RTSJ

28

If your application can tolerate some degree of non-determinism,
then use a non-real-time virtual machine and tune it to obtain the
response time you need, down to perhaps a 20 millisecond latency
or so, but be aware that there will be occasional response time
outliers. If you need response times below 20 milliseconds, even
down to 30–70 microseconds, use Java RTS and its RTGC.

Achieving any degree of predictability requires trading off
application throughput in various ways. Virtual machine selection
and configuration therefore occurs along a predictability spectrum.
As virtual machines evolve, we can expect to be able to specify a
desired level of predictability and have the system configure itself
automatically to achieve it. Until then, a degree of manual
configuration will be necessary. Using Java RTS and RTGC
minimizes the effort necessary to achieve sub-millisecond levels of
predictability.

RTSJ's Problem Domain

If price of processor or memory is a small part
of whole system RTSJ is a good choice

If processor and memory price is very significant
when compared with the rest of the system RTSJ
may not be a good choice because you will need
slightly more powerful processor and larger memory
For very low footprint applications with very limited
resources you may consider a non RTSJ compliant
virtual machine like Aonix Perc Pico or you may
even consider a hardware JVM.

29

Implementations
IBM Webshere Real Time (RTSJ Compliant)

Works on real-time linux kernel
There is a soft real-time version

SUN RTS (RTSJ Compliant)
Works on Solaris x86/Sparc or real-time linux kernel

Aonix Perc (Not RTSJ Compliant but close)
Perc-Ultra works on nearly all platforms
They have a safety critical JVM (Perc-Raven)

Apogee
Woks on nearly all platforms

30

Main Features of RT Java
Implementations

Full Java SE compatibility and Java syntax
A way to write programs that do not need garbage collection (New

API)
High resolution timer (New API)
Thread priorities and locking (New API)
Asynchronous Event Handers (New API)
Direct memory access (New API)
Asynchronous Transfer of Control (New API)
AOT (A Head of Time) compilation (Not in RTSJ specification)
Garbage collection (Not in RTSJ specification)

31

Real-Time Garbage Collectors

• Time based (Metronome of Websphere RT)
• Work based
• Henriksson’s GC (Garbage Collector of Sun’s

Java RTS is based on this)

32

It is a non-generational garbage collector. It operates on all heap at each execution. It has 3
modes of execution. It’s has 3 modes of execution. In normal mode priority is lowest RT
priority by default (can change this using –XX:RTGCNormalPriority). It works concurrently
with other threads. If free memory goes below a certain threshold (can be configured with –
XX:NormalMinFreeBytes), it switches to boosted mode. In this mode its priority increased
to boosted priority (Can be changed with –XX:RTGCBoostedPriority). Although in this
mode GC can preempt RT Threads with priority lower than GC boosted priority, it can still
work concurrently with them. If free memory continues to drop to a critical threshold, GC
switches to critical mode. This mode is called deterministic mode. In this mode its priority is
still boosted mode priority but all non-rt threads and threads with priority lower than GC
boosted priority are suspended. If a thread wich has priority higher than boosted GC priority
makes memory allocation it can be served from a special region called critical reserved
memory (size can be adjusted using –XX:RTGCCriticalBoundary). Number of GC threads
in normal and boosted/critical mode can be adjusted using commandline switches.

Sun’s RT Garbage Collector

• 3 modes of execution
• Non generational, concurrent and parallel collector
• In normal mode works with priority higher than non-rt threads

but lower than any rt thread.
• When free memory goes below a certain threshold priority is

increased to boosted priority but RT Threads (including the one
with priority lower than GC) still continues to work concurently

• When free memory goes below a critical threshold.All threads
whose priority is lower than GC boosted priority are suspended

• Most of its working can be tuned using command line switches
like: NormalMinFreeBytes, RTGCNormalWorkers,
RTGCBoostedPriority, BoostedMinFreeBytes etc.

33

To use AOT or ITC compilation you have to provide list of classes and methods to be
compiled ahead of time or at jvm startup. RTSJ implementations may provide tools to help
you to generate this list.

AOT, ITC and JIT

• Nearly all Java SE vendors use JIT (Just in time
compiler) due to performance reasons

• Websphere RT uses AOT (Ahead of Time
Compilation)

• SUN’s Java RTS uses ITC (Initialization Time
Compilation)

Refer following IBM Article for further information: Real-time Java, Part 2: Comparing compilation techniques

34

A High Resolution Timer is required for an RT System. RT-Posix requires one. If you look
at getTime(AbsoluteTime) method you can see that this method enables you to get time
without creating a new AbsoluteTime object. Reason for this will be clear when we learn
other features of RTSJ.

High-Resolution Timer
A more powerful notion of time

AbsoluteTime
RelativeTime

84 bits value
64 bits milliseconds and 32 bits nanoseconds
Range is 292 million years

Every RTSJ implementation should have provide at
least one high resolution clock accessible with
Clock.getRealTimeClock()
Resolution is system dependent

– For example it is 200ns for SunFire v240 (Ref:Real-Time Java
Programming by Greg Bollella)

– Do not expect too much from a laptop

35

AbsoluteTime absolute(Clock clock)
AbsoluteTime absolute(Clock clock, AbsoluteTime dest)
int compareTo(HighResolutionTime time)
int compareTo(java.lang.Object object)
boolean equals(java.lang.Object object)
boolean equals(HighResolutionTime object)
long getMilliseconds()
int getNanoseconds()
int hashCode()
RelativeTime relative(Clock clock)
RelativeTime relative(Clock clock, RelativeTime time)
void set(HighResolutionTime time)
void set(long millis)
void set(long millis, int nanos)
static void waitForObject(java.lang.Object target,

HighResolutionTime time) throws
InterruptedException

HighResolutionTime Base Class

Base class for
other 3 time
classes.
Define the
interface and
provides
implementation
of some
methods
This class and
its subclass do
not provide any
synchronization

36

AbsoluteTime and RelativeTime

AbsoluteTime represents a specific point in time
– The string 03.12.2008 11:00:00.000 AM

represents an absolute time
– Relative to 00:00:00.000 01.01.1970 GMT

RelativeTime represents a time interval
Usually used to specify a period for a
schedulable object
Can be positive, negative or zero

37

Fixed priority preemptive scheduler does not change priority of the tasks automatically
for this reason it is called fixed priority. Preemptive scheduler may preemt a task if a
higher priority task is runnable.

Priority Scheduler

• Normal scheduling algorithms try to be fair for
task scheduling.
– Even lower priority tasks are scheduled some times

• There are different real-time and non real-time
schedulers
– Earliest-deadline first, least slack time, latest release

time etc.
• Fixed priority preemptive scheduler is most used

real-time scheduler

38

Note that RT-Posix required 32 unique priorities. These requirements are also required by
RT-Posix

Thread Scheduling in RTSJ

• Does not specify a scheduling implementation
• Allow different schedulers to be plugged
• Required base scheduler should be a priority

scheduler with at least 28 unique priorities
• Most implementations provide more than 28

priorities

More on this with Scheduling Parameters Slide

39

Explain priority inversion by drawing on the board.
The trouble experienced by the Mars lander "Mars Pathfinder"[1][2] is a classic example
of problems caused by priority inversion in realtime systems. Software continously
reseted by watchdog timer due to priority inversion in actual mission. Error occured once
in test phase but can not be repeated and clasified as a hardware glitch.

Under the policy of priority inheritance, whenever a high priority task has to wait for
some resource shared with an executing low priority task, the low priority task is assigned
the priority of the highest waiting priority task for the duration of its own use of the
shared resource, thus keeping medium priority tasks from pre-empting the (originally)
low priority task

With priority ceilings, the shared mutex process (that runs the operating system code) has
a characteristic (high) priority of its own, which is assigned to the task locking the mutex.
This works well, provided the other high priority task(s) that try to access the mutex does
not have a priority higher than the ceiling priority.

What is Priority Inversion?

• Priority Inversion is the situation where a higher
priority task waits for a low priority task.

• There are 2 generally accepted solution
– Priority Inheritance (required by RTSJ)
– Priority Ceiling Emulation (optional for RTSJ)

40

T1:Low priority task is executing
T2:Low priority task acquire shared lock
T3:High priority task preempts low priority task
T4:High priority task requests the same shared resource

with low priority one and suspended. Low priority Task executes
T5:Medium priority task preempts low priority task
T6:Medium priority task continues to execute
T7:Medium priority task executes and completes
T8:Low priority task executes and completes
T9:High priority task acuires the lock and completes

What is Priority Inversion? cont.

Time

Shared
Resource

Legend

Lock
request

Waiting Task

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Low priority
executing task
Med priority
executing task
High priority
executing task

41

Real time threads are very similar to JLTs with some extra behaviors and constraints.
They can do everything a JLT can do. You can specify several parameters parameters
while creating them or at a later time.
Most important parameters are as follows:
SchedulingParameters: This parameter is handled by underlying scheduler and tell
scheduler how this Thread should be scheduled.
ReleaseParameters:As you will see at later slides, a thread can be periodic, aperiodic or
sporadic.
MemoryArea: RTSJ defines other memory regios than heap. A real-time thread can
perform allocation in these new memory regions. The memory region passed with this
parameter will be default allocation context of this thread.
All parameters has a default value and null can be passed.

Schedulable Interface

42

RTSJ defines a plugable scheduler architecture. Different schedulers may be plugged and
each different scheduler may need different information as its scheduling parameters.
RTSJ’s default priority scheduler defines scheduling parameter as priority so a
PriorityParameters class is included to use with priority scheduler.
Sometimes you may need to define an order between the task with the same priorities.
Using ImportanceParameters you can define relative importance of tasks with the same
priority. Base PriorityScheduler does NOT considers ImportanceParameters.
Number of available priorities depends on target operating system. You can expect
minimum of 28 different priorities. On solaris there are 60, on linux there are 49.

Scheduling Parameters

43

Periodic tasks occursat a known rate. It is easy to analyse feasibilty of meeting deadlines if
you have all peridic task with known costs
Aperiodic tasks does not have any occurance rate. They may occur at any time.
Sporadic tasks are like aperiodic tasks but they have a known minimum inter occurance
time.
Aperidic taks can be scheduled using a sporadic server task. Which executes at a scheduled
rate and executes a periodic taks.

Different Task Types

• Periodic
• Aperiodic Tasks
• Sporadic

44

Release parameters determine whether a thread is periodic, aperiodic or sporadic. You
can specify time with nanoseconds resolution. Actual resolution will be platform
dependent and you should test on your target environment. For a periodic task there is a
minimum period that can be specified. This value is plaform dependent and should be
tested. Your target environment may allow you to change this value to a lower one.
All aperiodic events are put to a queue. Size of this queue can be specified using
setInitialArrivalTimeQueueLength method. You can also specify what to do if this queue
fulls. Valid optionas are throwing an exception, disgarding event, increasing queue size
accordingly or replacing the last one on the queue.
Sporadic tasks are like aperiodic tasks. Instead this time you specify what to do task
which does not obey their minimum inter arrival time using setMitViolationBehavior.
Your valid options are the same.

Release Parameters

45

Sample Periodic Task
public class HelloWorld extends RealtimeThread {

public static long[] times = (long[]) ImmortalMemory.instance().newArray(long.class, 100);

public HelloWorld(PeriodicParameters pp) {
super(null, pp);

}

public void run() {
for (int i = 0; i < 100; i++) {

times[i] = System.currentTimeMillis();
waitForNextPeriod(); //wait for next period

}
}

public static void main(String[] argv) {
//schedule real time thread at every 100 milisecond
PeriodicParameters pp = new PeriodicParameters(new RelativeTime(100, 0));
HelloWorld rtt = new HelloWorld(pp);
rtt.start();

//wait real time thread to terminate
try {

rtt.join();
} catch (InterruptedException ex) {

ex.printStackTrace();
}

//print results
for (int i = 0; i < 100; i++) {

System.out.println(times[i]);
}

}
}

46

A loop that uses sleep to execute once per period will cycle too slowly since every
iteration of the loop uses sleep time plus the time to execute the code in the loop. Even
measuring the time of the code in loop may not help. It is nearly impossible to get
correct.

Periodic Execution vs
Thread.sleep

Real-time systems do not use a loop with a
sleep in it to drive periodic executions

While (true) {
performPeriodicTask()
Thread.sleep(period)

}
WRONG

47

If a thread misses its deadline due to system overload executing an extra event handler may
overload system more and cause extra deadline misses. You should design your miss
handlers as light-weight as possible. Note that execution of deadline miss handler is not
synchronous. Miss handler may block the thread, or may work parallel to thread depending
on the priority of the handler and number of CPUs.A thread that misses a deadline continues
to execute until it calls waitForNextPeriod. If thread does not have a deadline miss handler,
waitForNextPeriod returns immediately with false value to signal a deadline miss. An RT
Thread wihch misses a deadline is automatically descheduled, its deadline miss handler may
reschedule it, terminate it using interruption.

Deadline Miss!
• For some applications a deadline should not be

missed for any reason
• For most applications dealine miss is bad, but it

is not a total failure and a recovery is possible
• In RTSJ there are 2 ways to detect a deadline

miss
– waitForNextPeriod() returns false immediately
– Use a deadline miss handler which is an instance of

AEH

48

Since NHRT are not allowed to access heap, they can preempt garbage collector at any time
without any additional latency. Although normal RT Threads can also preempt GC they
should always wait GC to be at a safe preemption point.
They can not be created from normal threads because normal threads can not execute in
scoped or immortal memory.
They can only use ImmortalMemory or ScopedMemory. If a NHRT tries to access heap,
MemoryAccessError is thrown. Enforcing this rule at runtime introduce additional runtime
overhead. But some of it can be avoided by JVM by analysing application at runtime.

NoHeapRealTime Thread

• Can not access heap
– Can preempt GC immediately
– If this rule is violated, MemoryAccessError is thrown

• Can use ScopedMemory or ImmortalMemory
• Should be created and started in a scoped or

immortal memory
– They can not be created from normal Threads

49

Sometimes hard real-time and non-realtime parts of the application need to change data. The
important thing is not blocking a real-time thread due to a non real-time thread. To faciliate
this wait free queues are provided.
The write method appends a new element onto the queue. It is not synchronized, and does
not block when the queue is full (it returns false instead). Multiple writer threads or
schedulable objects are permitted, but if two or more threads intend to write to the same
WaitFreeWriteQueue they will need to arrange explicit synchronization. If write is
suscessfull write method returns true. Otherwise it returns null. Force method is similar to
write method. The difference is if queue is full, it overrides the lates element in the queue.
Return value of force method show whether an element is overriden.
The read method removes the oldest element from the queue. It is synchronized, and will
block when the queue is empty. It may be called by more than one reader, in which case the
different callers will read different elements from the queue.

WaitFreeWriteQueue

• Intendent for exchanging
data between real-time
and non real-time part

• Real-time producer does
not block when queueing
data

• Multiple non-real time
consumers may dequeue
data

50

The write method appends a new element onto the queue. It is synchronized, and blocks
when the queue is full. It may be called by more than one writer, in which case, the different
callers will write to different elements of the queue.
The read method removes the oldest element from the queue. It is not synchronized and
does not block; it will return null when the queue is empty.Multiple reader threads or
schedulable objects are permitted, but if two or more intend to read from the same
WaitFreeWriteQueue they will need to arrange explicit synchronization.

WaitFreeReadQueue

• Intendent for exchanging
data between real-time
and non real-time part

• Real-time consumer
does not block when
reading data

• Multiple non-real time
producers may queue
data

51

Each schedulable has an allocation context. It can be one of the 4 defined main memory
regions.
ImmortalMemory is a memory resource that is unexceptionally available to all schedulable
objects and Java threads for use and allocation. An immortal object may not contain
references to any form of scoped memory. Object in immortalMemory are never garbage
collected. All static data goes into this region.
Objects allocated in scoped memory are freed when (and only when) no schedulable object
has access to the objects in the scoped memory. When a ScopedMemory area is instantiated,
the object itself is allocated from the current memory allocation context, but the memory
space that object represents (it's backing store) is allocated from memory that is not
otherwise directly visible to Java code; e.g., it might be allocated with the C malloc
function. This backing store behaves effectively as if it were allocated when the associated
scoped memory object is constructed and freed at that scoped memory object's finalization.
The enter() method of ScopedMemory is one mechanism used to make a memory area the
current allocation context. The other mechanism for activating a memory area is making it
the initial memory area for a real-time thread or async event handler.
An instance of ImmortalPhysicalMemory allows objects to be allocated from a range of
physical memory with particular attributes, determined by their memory type. This memory
area has the same restrictive set of assignment rules as ImmortalMemory memory areas, and
may be used in any execution context where ImmortalMemory is appropriate.
LTMemory represents a memory area guaranteed by the system to have linear time
allocation when memory consumption from the memory area is less than the memory area's
initial size. Execution time for allocation is allowed to vary when memory consumption is
between the initial size and the maximum size for the area. Furthermore, the underlying
system is not required to guarantee that memory between initial and maximum will always
be available. Objects in LTMemory can be safely accessed from NoHeapRealTimeThread.
VTMemory is similar to LTMemory except that the execution time of an allocation from a
VTMemory area need not complete in linear time.

Memory Regions
• Heap Memory

– Same as in Java SE
– Can be accessed with javax.realtime.HeapMemory

• Scoped Memory
– Created and sized at development time
– Can be accessed with javax.realtime.ScopedMemory
– Can not be garbage collected; reference count to ScopedMemory object is used.

Finalize method of objects are called
– Can be stacked

• Immortal Memory
– Can be accessed with javax.realtime.ImmortalMemory
– Only one instance exist and size is determined at development time.
– All static data and allocations performed from static initializers are allocated in

Immortal memory. Interned Strings are also allocated in immortal memory
• Physical Memory

– There are LTPhysicalMemory, VTPhysicalMemory, and ImmortalPhysicalMemory

52

MemoryArea is the abstract base class of all classes dealing with the representations of
allocatable memory areas, including the immortal memory area, physical memory and
scoped memory areas.

Memory Regions

53

An instance of RawMemoryAccess models a range of physical memory as a fixed
sequence of bytes. A full complement of accessor methods allow the contents of the
physical area to be accessed through offsets from the base, interpreted as byte, short, int,
or long data values or as arrays of these types.
The RawMemoryAccess class allows a real-time program to implement device drivers,
memory-mapped I/O, flash memory, battery-backed RAM, and similar low-level
software. List of methods in the diagram are not complete.

Raw Memory Access

• Models a range of
physical memory as a
fixed sequence of bytes

• Allows device drivers to
be writen in java

• All raw memory access
is treated as volatile, and
serialized

54

Raw Memory Access Cont

private final long DEVICE_BASE_ADDRESS = xxxxxx;
private final long CTRLREG = 0;
private final long STATREG = 4;
………

public void init() {
RawMemoryAccess device = new RawMemoryAccess(type, DEVICE_BASE_ADDRESS);
device.setInt(CTRL_REG, MY_COMMAND); //send command to device
while (device.getInt(STATREG) != 0); //wait for device to response

}

55

How binding is performed is not specified in RTSJ. A bind method is defined but possible
values of its string argument are not defined and platform specific. You may create your
own event objects by extending from AsyncEvent. They are not only for external events.
AEHs are designed to execute a few lines of code, then exit. They are not expected to

block, sleep, or change its scheduling parameters.

Async Events

Many of the processing in
RT systems are triggered by
internal or external events
You don’t need to manage
threads
Hundreds of AEHs may
share a pool of threads
BoundAsyncEventHandler
has always bounded to a
dedicated thread

56

Handling Posix Events

• Use POSIXSignalHandler
– Ex:

.....

class SigintHander extends AsynchEventHandler {
public SigintHandler() {

//set it to highest priority
setSchedulingParameters(new PriorityParameters(RTSJ_MAX_PRI);

}
public void handleAsynchEvent() {

//handle user specified signal
}

}

......
//add handler to posix predefined posix signal
POSIXSignalHandler.addHandler(PosixSignalHandler.SIGUSR1, sigintHandler)

Use kill -s SIGUSR1 PID to test

57

Time Triggered Events

OneShotTimer : execute handleAsyncEvent
method once at the specified time
PeriodicTimer : execute handleAsyncEvent
method repeatedly at specified interval. A
periodicTimer and a AEH combination is
roughly equivalent to Periodic Threads.
Enable/Disable Timer : A disabled timer is still
kicking. But it does not generate events. When
enabled again, it continues like never disabled.

58

1. You don't need to guess the capacity of a TextBuilder, FastTable or a FastMap, their
size expand gently without ever incurring expensive resize/copy or rehash operations
(unlike StringBuilder, ArrayList or HashMap).

3. Javolution classes are fast, very fast (e.g. Text insertion/deletion in O[Log(n)] instead
of O[n] for standard StringBuffer/StringBuilder).

4. All Javolution classes are hard real-time compliant and have highly deterministic
behavior (in the microsecond range). Furthermore (unlike the standard library), Javolution
is RTSJ safe (no memory clash or memory leak when used with Java Real-Time
extension).

5. Javolution makes it easy for concurrent algorithms to take advantage of multi-
processors systems.

6. Javolution's real-time collection classes (map, list, table and set) can be used in place
of most standard collection classes and provide numerous additional capabilities.

7. Any Java class can be serialized/deserialized in XML format in any form you may
want, also no need to implement Serializable or for the platform to support serialization

8. Javolution provides Struct and Union classes for direct interoperability with C/C++
applications.

9. Javolution runs on any platform from the simplest J2ME CLDC 1.0 with no garbage
collector to the latest J2EE 5.0 with parameterized types.
10. Javolution is a pure Java Solution (no native code), small (less than 300 KBytes jar

file) and free; permission to use, copy, modify, and distribute this software is freely
granted, provided that copyright notices are preserved (BSD License).

Javolution Library
(http://javolution.org)

High performance and time deterministic
(util/lang/text/io/xml)
Struct and Union base classes for direct
interfacing with native applications
NHRT Safe
Pure Java and less than 300Kbytes
BSD License

59

IBM WebSphere Real Time

Runs on linux with real time patches applied to
linux kernel on x86 platforms
Has AOT and JIT Compilers
Shared classes support
Contains Metronome: a real-time garbage
collector
Full RTSJ 1.0.2 and Java SE 6.0 support
A well defined list of NHRT safe classes

60

The reason for scheduling against time instead of allocation
rate is that allocation is often uneven during an application's
execution.
Metronome divides time into a series of discrete quanta,
approximately 500 microseconds but no more than 1
millisecond in length, that are devoted to either GC work or
application work.
Arraylets break up large arrays into smaller pieces to make
large array allocations easier to satisfy without defragmenting
the heap. The arraylet object's first level, known as the spine,
contains a list of pointers to the array's smaller pieces, known
as leaves. Each leaf is the same size, which simplifies the
calculation to find any particular element of the array and also
makes it easier for the collector to find a suitable free space to
allocate each leaf. Breaking arrays up into smaller
noncontiguous pieces lets arrays be allocated within the many
smaller free areas that typically occur on a heap, without
needing to compact.

Metronome Garbage Collector

Uses a time based method for scheduling
Applications threads are given a minimum
percentage of time (utilization)

User supplied at startup
Uses a new two-level object model for arrays
called arraylets

61

All the classes in a jar file can be compiled or only
hot methods can be compiled using information
obtained from a previous run of the application.
Although AOT code enables more-deterministic
performance, it also has some disadvantages.
The JXEs used to store AOT code are generally
much larger than the JAR files that hold the class
files because native code is generally less dense
than the bytecodes stored in class files.A second
disadvantage is that AOT-compiled code, though
faster than interpreted code, can be substantially
slower than JIT-compiled code. To avoid
nondeterministic performance effects, neither the
JIT compiler nor the AOT compiler provided in
WebSphere Real Time applies the aggressively
speculative optimizations generally applied by
modern JIT compilers.

Websphere AOT

62

SUN RTS

Achieves maximum latencies of 15
microseconds, with around 5 microseconds of
jitter.
Runs on real-time linux and Solaris 10
Has a real-time garbage collector

63

IBM WebSphere Real Time
Runs on linux with
real time patches
applied to linux kernel
Has AOT and JIT
Compilers
Contains Metronome
real-time garbage
collector
RTSJ and Java SE
5.0 Compliant

64

Real World Projects:J-UCAS X-45C

65

Real World Projects:FELIN

66

Real World Projects:DDG-1000

67

Real World Projects:ScanEagle

This milestone marked the first flight using the
RTSJ on an UAV and received the Java 2005
Duke’s Choice Award for innovation in Java
technology.

68

Is RTSJ Required for You?

If your application can tolerate some degree of
indeterminism use standard JVM and tune it to
milliseconds level
Only if you fail the first approach use RTSJ.

Try to meet your timing constrains with real-time
garbage collector (if available) without using
advance/complex features like scoped memory
If first approach fails make use of
NonHeapRealTimeThread, ImmortalMemory,
ScopedMemory

69

A comparison of the features of RTSJ with
the increased predictability

From IBM WebSphere Real Time Manual

70

Java byte code will be converted to target
platform prior to deployment and certification.
Most probably garbage collector will not be
available because it is very complex to certify
and not needed by this kind of applications
where resources are statically allocated.
A set of tools for analysing source code for
verification will be provided

Safety Critical Java (JSR 302)

A subset of RTSJ that can be certified DO-178B
and ED-128B.
Most probably garbage collector will not be
available (not needed)
Will be targeted to Java ME platform, because
Java SE and Java EE are too complex to be
certified.

71

Aonix safety critical JVM is based on JSR 302. Selected to be evaluated in
DIANA project
that aims to evaluate new tools to modernize tool chains used in avionics.
Aonix safety critical JVM (Raven) will be also evaluated in Taranis,
a technology demonstration program for enhanced aerial vehicles for the
UK Ministry of De fence

Expert Group of JSR 302

Specification Lead:C. Douglass Locke (POSIX 1003.4 Real-Time
Extensions Working Group)

Expert Group

Aicas GmbH Aonix North America, Inc Apogee Software, Inc.
AXE, Inc Boeing DDC-I, Inc
IBM Siemens AG Rockwell Collins, Inc

Sun Microsystems The Open Group

72

Resources
Real-Time Java Platform Programming by Peter C. Dibble

Real-Time Java Programming with Java RTS by Greg Bollea

RTSJ Main Site (www.rtsj.org)

IBM’s Developerworks Articles
(http://www.ibm.com/developerworks/)

SUN RTS
(http://java.sun.com/javase/technologies/realtime/reference.jsp)

Deniz Oğuz’s blog (www.denizoguz.com)

73

Resources Cont. (JavaOne Presentations in 2008)

TS-4797 Fully Time-Deterministic Java Technology
Explains Javalution Library

TS-5767 Real-Time Specification for Java (JSR 1)
Explains status of RTSJ. Join presentation from SUN, IBM,
Locke Consulting (JSR 302 spec lead)

TS-5925 A City-Driving Robotic Car Named Tommy
Jr.

An autonomous ground vehicle fully powered by Java.

TS-5609 Real Time: Understanding the Trade-offs
Between Determinism and Throughput

